A maturing field of research

The range of processes has expanded enormously from energy generation to synthesis of organics

Dear ISMET member,

Almost exactly 10 years ago I published my first manuscript on microbial fuel cells. In those days, my endnote library comprised only about 50 references on this theme and I had no clue how my reactors worked. I did a small press release on electricity from sugar; the press headlined it as “Stinking batteries” – not the greatest success. 10 years later, we have seen a dramatic change. We now have a maturing field of research, with first full scale applications installed. The range of processes has expanded enormously, going from energy generation to synthesis of organics, from tiny implantable devices to cubic meter scale waste treatment reactors. "Microbial fuel cell" as search term now gives more than 3100 references in Web of Science, with more than 66000 citations and an H index of 114. Impressive!

Many challenges yet remain to bring the technology and processes to a mature stage, and ISMET can play a crucial role in this. It is indeed a platform for exchange of information and promotion of our work, both internally and externally. This will drive the necessary credibility with stakeholders and investors. The three conferences next year, in Singapore, State College (PA) and Madrid will constitute the next opportunity for all members to meet and exchange information. In the meantime the website committee has been busy expanding the information base on the website. I am very honoured to lead this clearly vibrant and growing grass-roots organization for the coming two years and hope to see many of you at the meetings, or interact via our website or other means.

Best wishes for 2014!

Korneel Rabaey
President
The 4th International Microbial Fuel Cell conference was held in Cairns, Australia on September 1-4 2013. The conference program was packed with high level talks, covering all streams of the field of microbial electrochemical technology, namely microbial aspects, electrochemistry and technology.

The conference welcomed 152 delegates from the world over, one third of them students, continuing along the MFC-conference series trend of attracting primarily students and young researchers. The MFC series will now turn into the ISMET series, with ISMET 5 planned for October 1-4, 2015 in Tempe, Arizona.

The MFC4 saw a good representation from most world regions, with 61 attendants from Asia, 38 from Europe, 33 from Australia and smaller delegations from North and South America, Middle East, Oceania and Africa.

The keynote speakers were Prof. Lars Peter Nielsen and Prof. Cees Buisman. Lars intrigued the audience with a fascinating talk on cable bacteria and their “snorkels”, Cees gave an overview of a number of technological approaches that are expected to make MFCs economically feasible in the short term, including a “switch to urine”, novel copper-based cathodes, and capacitive anodes. The other invited speakers satisfied the audience’s appetite for novelty and perspective. These included Prof. Korneel Rabaey, Prof. Xia Huang, Dr. Ashley Franks, Prof. Lars Angenent, Dr. Falk Harnisch and last but not least, outgoing ISMET president Prof. Bruce Logan.

Rich poster and pitch sessions engaged the audience before and during coffee breaks. The variety of topics covered and the scientific level were remarkable, conveying the impression that the domain of microbial electrochemistry and technology is not only expanding in size, but also in depth and quality.

The award for the best pitch presentation went to Andreas Vogl from Germany, while Cotterill, Golitsch and Nishio were awarded for best posters and were forced back to their rooms after a rich Aussie barbecue to prepare a surprise pitch for their posters.

The CEMES Biofilm Electrochemistry Workshop sponsored by the Centre for Microbial Electrosynthesis (CEMES) that was held during the three days leading to the conference was an opportunity for about 30 young researchers in the field to have some fun together, while learning electrochemistry theory and techniques through both classroom and laboratory activities. The active learning approach was well received and stimulated the participants’ thirst for electrochemical knowledge. More than 90% of the attendants agreed that they found the workshop well organized and that they learned a lot during both classroom and laboratory sessions.

Dr. Stefano Freguia
Advanced Water Management Centre
University of Queensland, Australia
The first electrochemical highlight of MFC4 originates even before the conference had officially started. A Biofilm Electrochemistry Workshop was indeed organized Friday 30 August - Sunday 1 September 2013 by a dedicated team from the Centre for Microbial Electrosynthesis (CEMES), the Advanced Water Management Centre (AWMC), The University of Queensland and the International Society for Microbial Electrochemistry and Technology (ISMET). This workshop was definitely a success as it was "sold-out" well before the opening of the conference. It also proved to be useful as many attendants were asking basic electrochemistry questions to the conference's speakers. The attendants were given lectures at the Shangri-La Hotel and practicals at Trinity Bay on biofilm electrochemistry, and a tutorial booklet summarizing the basic concepts. Those who did not get the chance to attend can read the mini-review by Freguia and Harnisch (Chem. Asian J. 2008) or, to better grasp the subtleties of cyclic voltammetry applied to electroactive biofilms the recent article by Rousseau et al. (Energy & Environmental Science ASAP 2013). A subjective selection of electrochemistry related talks include those related to surface modification for example that of Flexer (Queensland) on plasma treatment of electrodes, Lapinsonnière (Rennes) on boronic acid functionalisation of carbon nanotube and Guo (Ghent) on the effect of surfactant deposited onto electrode surface. The talk from Bernet (INRA, Narbonne) focused on electroactive biofilms selected from salt marshes (highly conductive electrolytes) and that of Kavanagh (Galway) on the effect of the applied potential on the microbial electroactive catalyst. Knight (Sydney) presented a soil microbial fuel cell that can in principle power remote sensor networks. Few presentations were given on the coupling of electrochemistry with spectroscopic techniques. One interesting exception was by Schkolnik (IRSTEA, Anthony) discussed the microbiology of oxygen reducing cathode. A copy of all these presentations and others along with the conference book of abstract were given out on a USB drive at the end of the conference. This idea allowed the attendants to scroll back through the slides of their favourite talks or to have a look at those they missed, either because of the two parallel sessions or because they sneaked out for a while to check out the tropical rain forest or the great coral reef. More news and advances in 2015 at Arizona State for ISMET5, the new name for MFC5!

Dr. Frédéric Barrière
Université de Rennes 1, France

Best MFC4 works

Postgraduated students were the stars of the busy pitch sessions and lively discussions in the coffee breaks, a unique atmosphere for networking with other colleagues. The works were evaluated by a committee with the aim of encouraging the excitement of younger colleagues in presenting their work. The nominees were announced during the final sesión of the conference. The jury voted the following as the best works:

Best pitch presentation:
Vogl, A., Bischof, F. and Wichern, M. Karlsruhe Institute of Technology, Institute for Applied Biosciences (Germany). *Inter anode biofilm transfer as a strategy to shorten the start-up time of microbial fuel cells.*

Best posters:
Golitsch, F., Bücking, C., Simonte, F. And Gescher, J. (Germany). *An engineered biosensor based on Shewanella oneidensis outer membrane protein complexes – a proof of principle.*

A big success: the CEMES Biofilm Electrochemistry Workshop

(Berlin) on the use of the vibrational Stark effect to study cytochromes adsorbed at modified gold surface. Among the many interesting posters selected for a short presentation in one of the successful "pitch sessions", that of Desmond (IRSTEA, Anthony) discussed the microbiology of oxygen reducing cathode. A copy of all these presentations and others along with the conference book of abstract were given out on a USB drive at the end of the conference. This idea allowed the attendants to scroll back through the slides of their favourite talks or to have a look at those they missed, either because of the two parallel sessions or because they sneaked out for a while to check out the tropical rain forest or the great coral reef. More news and advances in 2015 at Arizona State for ISMET5, the new name for MFC5!
The ISMET Awards 2012

The ISMET acknowledges outstanding work by postgraduate student and postdoctoral researcher members within the field of Microbial Electrochemical Technologies (METs) with two awards. These awards recognizes the best break through discovery and the scientific manuscript published in a peer-reviewed journal that has furthered the field of Microbial Electrochemical Technologies.

Winners of the awards were announced during the opening reception at MFC4, the International Microbial Fuel Cell Conference in Cairns, Australia, last September.

The winner of the 2012 ISMET Innovation Award was Elliot Friedman from the laboratory of Lars Angenent, Cornell University (email: esf59@cornell.edu). The award is open to postgraduate students and postdoctoral researchers in all fields including, but not limited to: Microbiology; Electrochemistry; Engineering; Physics; Material Science, associated with microbial bio- electrochemical systems and technologies.

The winner of the 2012 ISMET Discovery Award was Sudeep Popat from the laboratory of César Torres, Arizona State University (email: scp@asu.edu). This award broadly encompasses new discoveries that may or may not have been published in peer review journals that are available in the public domain. The award is open to all postgraduate students and postdoctoral members who are in good standing.

References

New Board of Directors

The ISMET Board was renewed last September

The outgoing members were President Bruce Logan, Vice President César Torres, and secretary Ashley Franks. During the next two years Korneel Rabaey, Lars Angenent and Abraham Esteve-Núñez will hold the positions of president, vice president and secretary, respectively.

This is the first rotation of the board of directors. Only active members are eligible for nomination and election. There are also new committee chairs: César Torres will take over the Membership committee, Miriam Rosenbaum will be in charge of the website committee and Falk Harnisch will be editing the following issues of the newsletter. These new members will join the already existing chairs: Awards (Ashley Franks) and Conferences (Lars Angenent). The rate of turnover is expected to be high to get the entire ISMET membership a chance to get involved. The Board of Directors encourages all members to actively participate with their contributions and comments to the newsletter and the website.
How and when did you come up with the idea for Plant-e?

David Strik. The idea to start Plant-e came from two directions. It was during the preparation of a research proposal in 2007 when Bert Hamelers, Jan Snel, Cees Buisman and me discussed how to valorize the just developed Plant-Microbial Fuel Cell. We came to the conclusion that we would include in the proposal to initiate a spin-off company at the final year of the project. The postdoc of the project, which was me, approved to do his best effort in initiating this idea. Surely, at that time I was not sure how and when to start; though I do like adventures and I do like the idea that new promising technologies should be valorized. So this project started at the end of 2007 with the idea to start a company around 2011. So far so good.

Next, in 2008 Marjolein Helder came in the picture. She just finished her Master degree at the Subdepartment of Environmental Technology – Wageningen University, and was searching for her dream. Marjolein was very interested in starting an Environmental Technology based company. While talking with Bert she found out about a new PhD position on the Plant-MFC. There she declared that she would like to fulfill this position on the condition that she could start a spin-off. So she started her PhD, and became even more enthusiastic after presenting the business case. Next, we founded Plant-e in September 2009 with great support of the StartLife and Wageningen University.

Since her PhD-graduation in November 2012 Marjolein is working full-time as CEO of Plant-e. Nowadays, David works as an assistant professor at Wageningen University, while supporting Plant-e’s R&D one day a week.

Which are the products your company provides?

D.S. Plant-e develops products in which living plants generate electricity. The technology enables us to produce electricity with living plants at practically every site where plants can grow. The technology is based on natural processes and is safe for both the plant, and its environment. Plant-e is currently working on several types of products.

What are your competitive advantages?

M.H. To my best knowledge, there are no serious rivals in the picture. Most important advantage of the technology is that it enables a new source to produce electricity. The Plant-MFC is a unique way to produce electricity from rhizodeposits while keeping the biomass function intact. This added value of the technology may be sufficient for this unique application.

Which customers are you focused on?

We are developing different products. Green electricity roofs are aimed both at companies and individuals with a flat roof surface who want to produce their own electricity in a very sustainable way. Meanwhile we are developing a tubular system for implementation in natural areas. This system will be piloted in the field in spring/summer 2014. Customers for that system will be either land-owners (governments, nature conservation agencies, farmers etc.) or energy companies.

Where do you see Plant-e in 5 years time?

D.S. Of course, I cannot predict the future. Though I hope to see that Plant-e is enabling large-scale green electricity production from wetlands.

M.H. In 5 years time we hope to have fully developed the green electricity roofs and are operating worldwide. Around that time we will have implemented the first large scale system in a natural wetland as well.

What about METs in 10 years?

D.S. Fundamental knowledge, new applications and technological advancements on METs are advancing rapidly. World-wide numerous spin-off companies are starting. I am optimistic that the market for MET is existing and that within 10 years several applications are realized. It’s fascinating to be part of the world of ISMET i.e. research and valorization. I am looking forward to the future!

A piece of advice to ISMET members to be starting up a business based on METs.

D.S. Numerous of (potential) MET applications exist. So grab the venture to make the world a greener place.
North America

Badalamenti, Jonathan
Title: Microbial Electrochemical Cells for Selective Enrichment and Characterization of Photosynthetic and Haloalkaliphilic Anode-Respiring
Host institution: Arizona State University
Description: Casey’s dissertation introduces multiple new reactor configurations including the Microbial Capacitive Desalination Cell (MCDC) and the Capacitive Microbial Desalination Cell (cMDC) for improved desalination. Additionally, the dissertation outlines a new reactor configuration for increased power output and an innocuous, high efficiency, low cost membrane.

Wang, Heming
Title: New electrode materials and active energy harvesting for microbial electrochemical systems, or MXCs
Host institution: University of Colorado
Description: Heming won the Graduate School Outstanding Ph.D. Dissertation Award for her Ph.D. research on new MFC electrode materials, active energy harvesting, commodity chemical production from wastewater, etc.

Friedman, Elliot
Title: Bioelectrochemical systems as tools to study subsurface biogeochemical processes
Host Institution: Cornell University
Description: I developed a cost-effective and field-ready potentiostat, capable of long term operation in remote areas with poised subsurface electrodes and measuring respiration of iron- and humic acid-reducing microbes. These systems were integrated with measurements of greenhouse gas emissions from soils and characterization of microbiome structure to study biogeochemical processes in multiple ecosystems.

TerAvest, Michaela
Title: Biological limitations of Shewanella oneidensis MR-1 in bioelectrochemical systems
Host institution: Cornell University
Description: Shewanella oneidensis is capable of transferring electrons to extracellular acceptors via both direct and mediated mechanisms, however it does so with a limited efficiency. This thesis investigated the reasons for the limited efficiency and ways to improve electron transfer rates from this organism (e.g., oxygen addition to enhance growth and mediator production).

Hussain, Abid
Title: Electricity production from carbon monoxide and synthesis gas in a microbial fuel cell (MFC).
Host institution: McGill University
Description: This study for the first time demonstrated electricity production in a MFC directly fed with carbon monoxide or synthesis gas, and elucidated the complex bio-electrochemical and transport phenomena involved in electricity production from syngas. Silicone membrane and multi-electrode MFCs were tested to increase the volumetric power output and Coulombic efficiency.

Asia-Pacific

Yang, Qiao
Title: Research on Electrode Material and System Construction of Stackable Compact Bioelectrochemical System
Supervisor: Prof. Yujie Feng
Affiliation: Harbin Institute of Technology (co-cultivated with Penn State University)
Introduction: By applying heat pretreatment to anode, developing high capacitance cathode and using spacer to reduce the unnecessary distance of reactors, a compact stackable microbial fuel cell system was built up with a high performance and low cost.

Qu, Youpeng
Title: The configuration and performance of microbial
desalination cell under continuous flow
Supervisors: Prof. Bruce E. Logan and Prof. Yujie Feng
Affiliation: Harbin Institute of Technology (co-cultivated with Penn State University)
Description: We developed a recirculation microbial desalination cell (rMDC) to avoid pH imbalances and bacterial inhibition. A series of hydraulically connected MDCs was designed.

Cheng, Haoyi
Title: Selective reduction of nitrobenzene in bioelectrochemical system and the feasibility of energy loop compensation
Supervisor: Prof. Aijie Wang
Host institution: School of Municipal and Environmental Engineering, Harbin Institute of Technology, China
Description: Nitrobenzene was selective reduced to aniline at biocathode. The required electrons and energy were found to be partially compensated from the mineralization of the produced aniline at bioanode.

Mao, Longfei
Title: Flux balance analysis to model microbial metabolism for electricity generation
Supervisor: Dr. Wynand Verwoerd.
Host institution: Lincoln University, New Zealand
Description: The PhD thesis employed in silico metabolic engineering techniques to model the optimal metabolic states and flux adjustments of the four selected microbial species (i.e., Geobacter sulfurreducens, Chlamydomonas reinhardtii, Synechocystis sp. PCC 6803 and Sacharomyces cerevisiae) for MFC electricity generation.

Zang, Guo-Long
Title: Complex waste treatment and photocatalytic hydrogen production based on the microbial fuel cells
Supervisors: Prof. Han-Qing Yu and Prof. Guo-Ping Sheng
Description: Plenty works were performed focusing on the conversion of lignocellulosic biomass and urine, pollutant degradation and hydrogen production using a proposed bio-photocatalytic cell with novel photoelectrocatalysis materials in MFCs.

Europe

Uria Moltó, Naroa
Title: Microbial Fuel Cell Performance: design, operation and biological factors
Institution: Genetics and Microbiology Department, Universitat Autònoma de Barcelona, Barcelona, Spain
Supervisor: Jordi Mas Gordi
Description: The efficiency of a MFC depends on the metabolic activity of the microorganisms growing at the anode but also on a large number of factors related to the design and operation of the MFC. The purpose of this work was to contribute to the analysis and control of some of these factors as well as to throw some light on the role of different electron transfer mechanisms in MFC operation.

Escapa González, Adrián
Biocatalyzed Electrolysis for Wastewater Treatment and Hydrogen Production
Supervisor: Antonio Morán Palao
Institution: Instituto de Medio Ambiente, Recursos Naturales y Biodiversidad, Universidad de León, Spain
Description: The aim of this thesis has been studying the techno economic feasibility of Biocatalyzed Electrolysis (BE) for wastewater treatment.

Sánchez Molas, David
Title: Hybrid integration of MEMS technology and rapid - prototyping techniques: Design, fabrication and characterization of miniaturized microbial fuel cells and electrochemical devices
Institution: Institute of Microelectronics of Barcelona (IMB-CNM, CSIC, Spain)
Supervisors: Francesc Xavier Muñoz y Francisco Javier del Campo (BioMEMS)
Description: The aim of this thesis is to improve the performance of miniaturized microbial fuel cells and electrochemical sensors. To achieve this goal, this thesis focuses on the development of new electrode materials and better fabrication and packaging processes.

Pastorella, Gabriele
Title: Genome shuffling of Geobacter metallireducens for enhanced electrochemical response
Host institution: School of Biotechnology, Dublin City University, Dublin, Ireland
Description: In this study, we improved the performance of the selected strain through genome shuffling. In particular, M23 mutant showed two-fold increase in electroactivity with respect to the wild type strain.

Desloover, Joachim
Title: Quantification, understanding and mitigation of nitrous oxide emissions from biological nitrogen removal processes
Supervisors: Prof. Emer. Willy Verstraete, Prof. Nico Boon and Prof. and Prof. Korneel Rabaey
Host institute: Faculty of Bioscience Engineering, Ghent University, Belgium
Description: The N2O emission from a full-scale BNR plant was quantified, and the involved microbial reactions responsible for N2O production were investigated. In a second phase, both curative and preventive mitigation strategies were investigated, aiming at minimizing the N2O emission from BNR processes.

Arends, Jan
Title: Optimizing the plant microbial fuel cell: diversifying applications and product outputs
Supervisors: Prof. Nico Boon, Prof. and Prof. Korneel Rabaey and Prof. Emer. Willy Verstraete
Host institute: Faculty of Bioscience Engineering, Ghent University, Belgium
Description: In this work, different components and designs of the plant-MFC were investigated in order to optimize electrical power output, find new niches for application or new products other than electrical power.
Job opportunities

Faculty Position in Environmental Engineering - University of Nevada, Reno

The Department of Civil and Environmental Engineering at the University of Nevada invites applications for a tenured faculty position in the area of environmental engineering. The position is expected to be filled at either the full or associate professor level with a start date of July 1, 2014. Candidates must have a Ph.D. in environmental engineering, civil engineering, or a closely related field of study. The selected candidate must have a strong research background in environmental engineering and have demonstrated leadership ability with proven interpersonal skills. In accordance with the University’s mission as a land grant institution, the candidate is expected to continue a sustained and dynamic externally funded research program, to supervise Ph.D. and M.S. students, to teach undergraduate and graduate courses, and to participate in university and professional service and outreach. To be considered for the rank of full professor, applicants must have an exceptional research record and be widely considered as a distinguished scholar and teacher, while for the rank of associate professor, applicants must have a documented record of funded, quality research, and excellent teaching. Applicants should submit their curriculum vitae, statement of research interest, teaching philosophy and contact information for five references electronically at: https://www.unrsearch.com/postings/12960

Postdoctoral research fellow position – La Trobe University, Australia

The Department of Microbiology at La Trobe University offers a research fellow position. Candidates are sought who have have completed or recently submitted a PhD in Microbiology, Biochemistry, Molecular Biology or a related discipline. For further details please contact Dr. Ashley Franks (a.franks@latrobe.edu.au).

Two postdoctoral fellows positions – SCELSE, Singapore

The Singapore Centre on Environmental Life Sciences Engineering (SCELSE) is a unique interdisciplinary Research Centre of Excellence (RCE), funded by National Research Foundation, Singapore Ministry of Education, Nanyang Technological University (NTU) and National University of Singapore. Applications for two postdoctoral fellows positions are being evaluated within a two-year MFC-related project, which aims to develop a novel bioelectrochemical sensor for wastewater. Applicants should have a PhD in bioelectrochemistry/MFC or molecular microbiology. For further information, please contact Enrico Marsili at SCELSE (emarsili@ntu.edu.sg).

Newsletter editorial board members

Editor Dr. Abraham Esteve-Núñez, University of Alcalá
Contributors to this issue Dr. Korneel Rabaey, Ghent University; Dr. David Strik, Wageningen University; Dr. Frédéric Barrière, Université de Rennes 1; Dr. Stefano Freguia, University of Queensland; Dr. Federico Aulenta, Water Research Institute, Italy; Dr. Enrico Marsili, Dublin City University; Dr. Ashley Franks, La Trobe University; Dr. Tristano Bacchetti de Gregoris, IMDEA Water, Spain; Dr. Xin Wang, Nankai University
Publishing coordinator Belén Barroeta, University of Alcalá

ISMET news is a quarterly publication from the ISMET International Society for Microbial Electrochemistry and Technology. © 2014 by the ISMET