Job post

Subscribed members can post open positions here. Not a subscriber yet? Register today!

Open job positions

Postdoctoral Researcher Position @ TU Braunschweig: Energy storage in electrotrophic-electrogenic biofilms.

Microbial electrogenesis, i.e., the production of electricity from organic compounds such as those found in wastes or marine sediments – and microbial electrosynthesis – the electrotrophic storage of electricity into organic energy storage molecules, are two prime application goals for microbial electrochemical technologies. Recent findings illustrate the possibility of combining electrotrophy and electrogenesis in one, switchable electrode-grown biofilm. This opportunity opens new ways to combine bioelectrochemical energy storage and power generation in a single device.
What are the mechanisms of the underlying metabolic processes, and how is the electrotrophic and electrogenic metabolism coupled with the extracellular electron transfer that connects cellular processes with the electrode? Single investigation methods, such as voltammetry or spectroscopy alone, will not allow achieve sufficient information depth. In collaboration with the Naval Research Laboratory in Washington, DC – and by using sophisticated in operando techniques, such as differential electrochemical mass spectrometry – this research project aims to study the mechanisms of such switchable biofilms. Applications should be sent by e-mail (keyword “ONR-Project”) to Uwe Schröder (uwe.schroeder(at), and must contain the following documents. - Motivation Letter including contact information for two references
- Curriculum Vitae including complete address, phone number, email address, educational background, language skills, and work experience-
- ...
Read More

Electrobioremediation of sediments contaminated by aromatic halogenated compounds and enrichment of dehalogenating microbial cultures

The research activities of this fellowship will be carried out in the frame of the H2020 research project Electra “Electricity driven Low Energy and Chemical input Technology foR Accelerated bioremediation”. The research project aims at the development of an innovative process for the electrobioremediation of sediments contaminated by polyhalogenated organic pollutants. The process is based on the use of polarized electrodes deployed in the sediment able to promote the establishment of reducing and oxidative redox conditions and to provide the anaerobic and aerobic dechlorinating microorganisms with electron donors and acceptors, either directly or indirectly through water electrolysis. This approach can represent a clean and efficient method to stimulate and control the activity of dechlorinating bacteria in contaminated environments, as it avoids the supplementation of chemicals to the contaminated matrix, and may allow to increase the selectivity and control of the process. In particular, the research activity will aim at the development of a bioelectrochemical process in which the reductive dehalogenation and oxidative degradation processes will be stimulated sequentially within the matrix in order to promote the complete degradation of the pollutant. Research plan The research activity will consist in:
  • the set-up of H-type bioelectrochemical cells with contaminated sediment and the ...
    Read More

PhD position on electron conduction in cable bacteria

Cable bacteria are filamentous bacteria that can conduct electrons across centimetre-scale distances and thereby metabolize distantly located electron donors and acceptors in aquatic sediment. The DNRF Center for Electromicrobiology at Aarhus University is looking for a motivated and talented PhD student to investigate how cable bacteria and their electron conductors work, based on the numerous options and challenges that this exceptional scale of biological electron transport poses for experimental studies. Institution contact information Department of Biology, Ny Munkegade 114-116, Aarhus C, Denmark. Contact email address External link ...
Read More

Past job positions